close
close

Annual rhythm in immune functions of blood leucocytes in an ophidian, Natrix piscator

  • Bowden, T. J., Thompson, K. D., Morgan, A. L., Gratacap, R. M. L. & Nikoskelainen, S. Seasonal variation and the immune response: A fish perspective. Fish Shellfish Immunol. 22, 695e706 (2007).

    Google Scholar 

  • Das, A., Jena, J. K. & Sahoo, P. K. Haematological and innate immune responses in Puntius sarana: Normal range and seasonal variation. Cent. Eur. J. Biol. 7, 460–469 (2012).

    CAS 

    Google Scholar 

  • Morgan, A. L., Thompson, K. D., Auchinachie, N. A. & Migaud, H. The effect of seasonality on normal haematological and innate immune parameters of rainbow trout Oncorhynchus mykiss L. Fish Shellfish Immunol. 25, 791–799 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Santos, A. A., Egami, M. I., Ranzani-Paiva, M. J. T. & Juliano, Y. Hematological parameters and phagocytic activity in fat snook (Centropomus parallelus): Seasonal variation, sex and gonadal maturation. Aquaculture. 296, 359–366 (2009).

    CAS 

    Google Scholar 

  • Reiter, R. J. Pineal melatonin, cell biology of its synthesis and of its physiological interactions. Endocr. Rev. 12, 151–180 (1991).

    CAS 
    PubMed 

    Google Scholar 

  • Hotchkiss, A. K. & Nelson, R. J. Melatonin and immune function: Hype or hypothesis?. Crit. Rev. Immunol. 22(5–6), 22 (2002).

    Google Scholar 

  • Nelson, R. J. Seasonal immune function and sickness responses. Trends Immunol. 25(4), 187–192 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Nelson, R. J. Interactions between motor commands and somatic perception in sensorimotor cortex. Curr. Opin. Neurobiol. 6(6), 801–810 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • Ahmad, R. & Haldar, C. Photoperiod-Testicular-Immune interaction in a seasonal breeder Indian palm squirrel Funambulus pennanti during the reproductively inactive and active phases. J. Neuroendocrinol. 21, 2–9 (2008).

    Google Scholar 

  • Freeman, D. A., Teubner, B. J., Smith, C. D. & Prendergast, B. J. Exogenous T3 mimics long day lengths in Siberian hamsters. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, 2368–2372 (2007).

    Google Scholar 

  • Wen, J. C., Dhabhar, F. S., & Prendergast, B. J. Pineal-dependent and -independent effects of photoperiod on immune function in Siberian hamsters (Phodopus sungorus). Hormones Behavior. 51(1), 31–39 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Brennan, C. P., Hendricks, G. L., El-Sheikh, T. M. & Mashaly, M. M. Melatonin and the enhancement of immune responses in immature male chickens. Poult. Sci. 81(3), 371–375 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Kliger, C. A. et al. Effect of photoperiod and melatonin on lymphocyte activities in male broiler chicken. Poul. Sci. 79, 18–25 (1999).

    Google Scholar 

  • Kondera, E., Witeska, M. & Lugowska, K. Annual changes in hematological parameters of common carp juveniles under laboratory conditions. Anim. Sci. 58, 143 (2019).

    CAS 

    Google Scholar 

  • Srivastava, S. & Choudhary, S. K. Effect of artificial photoperiod on the blood cell indices of the catfish, Clarias batrachus. J. Stress Physiol. Biochem. 6, 22–32 (2010).

    Google Scholar 

  • Singh, A., Singh, R. & Tripathi, M. K. Photoperiodic manipulation modulates the innate and cell mediated immune functions in the fresh water snake, Natrix piscator. Sci. Rep. 10, 1–12 (2020).

    Google Scholar 

  • Morgan, A. L., Thompson, K. D., Porter, M. J. R., Burrells, C., & Bromage, N. R. Effect of seasonality on the immune response of rainbow trout. In European Association of Fish Pathologists Conference, 2003 (Malta, 2003).

  • Wingfield, J. C. Regulatory mechanisms that underlie phenology, behavior, and coping with environmental perturbations: An alternative look at biodiversity. Auk. 129, 1–7. https://doi.org/10.1525/auk.2012.129.1.1 (2012).

    Article 

    Google Scholar 

  • Lillehaug, A., Lunestad, B. T. & Grave, K. Epidemiology of bacterial diseases in Norwegian aquaculture e a description based on antibiotic prescription data for the ten-year period 1991–2000. Dis. Aquat. Org. 53, 115–125 (2003).

    CAS 

    Google Scholar 

  • Ondrackova, M., Reichard, M., Jurajda, P. & Gelnar, M. Seasonal dynamics of Posthodiplostomum cuticola (Digenea, Diplostomatidae) metacercariae and parasite-enhanced growth of juvenile host fish. Parasitol. Res. 93, 131–136 (2004).

    PubMed 

    Google Scholar 

  • Revie, C. W., Gettinby, G., Treasurer, J. W., Rae, G. H. & Clark, N. Temporal, environmental and management factors influencing the epidemiological patterns of sea lice (Lepeophtheirus salmonis) infestations on farmed Atlantic salmon (Salmo salar) in Scotland. Pest Manag. Sci. 58, 576–584 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Sahoo, P. K., Kumari, J. & Mishra, B. K. Non-specific immune responses in juveniles of Indian major carps. J. Appl. Ichthyol 21(2), 151–155 (2005).

    Google Scholar 

  • Singh, T. & Singh, R. Circadian variation in peripheral blood leucocytes, the primary immune cells, in the garden lizard, Calotis versicolor (Daudin). Bioscan. 7(2), 211–214 (2012).

    Google Scholar 

  • Tripathi, M. K., Singh, R. & Pati, A. K. Daily and seasonal rhythms in immune responses of splenocytes in the freshwater snake, Natrix piscator. PLoS One. 10(2), e0116588. https://doi.org/10.1371/journal.pone.0116588 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Munoz, F. J. & De la Fuente, M. The effect of the seasonal cycle on the splenic leukocyte functions in the turtle Mauremys caspica. Physiol. Biochem. Zool. 74(5), 660–667. https://doi.org/10.1086/323033 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fallah, F. J., Khara, H., Roobi, J. D. & Boorani, M. S. Hematological parameters of Esox lucius in relation to different ages and seasons. Comp. Clin. Pathol. 23, 949–953 (2014).

    Google Scholar 

  • Seriani, R. et al. Influence of seasonality and pollution on the hematological parameters of the estuarine fish Centropomus parallelus. Braz. J. Oceanogr. 61, 105–111 (2013).

    Google Scholar 

  • Buchtikova, S. et al. The seasonal changes in innate immunity of the common carp (Cyprinus carpio). Aquaculture. 318, 169–175 (2011).

    CAS 

    Google Scholar 

  • Onishi, K. G. et al. Circadian and circannual timescales interact to generate seasonal changes in immune function. Brain Behav. Immun. 83, 33–43 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Stevenson, T. J. & Prendergast, B. J. Photoperiodic time measurement and seasonal immunological plasticity. Front. Neuroendocrinol. 37, 76–88 (2015).

    PubMed 

    Google Scholar 

  • Valero, Y., Garc, A., Cuesta, A. & Chaves-pozo, E. Seasonal variations of the humoral immune parameters of European sea bass (Dicentrarchus labrax L.). Fish Shellfish Immunol. 39, 185–187 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Leonardi, M. O. & Klempau, A. E. Artificial photoperiod influence on the immune system of juvenile rainbow trout (Oncorhynchus mykiss) in the southern hemisphere. Aquaculture. 221, 581e91 (2003).

    Google Scholar 

  • Wasser, J. S. Seasonal variations in plasma and tissue chemistry in water snakes, Nerodia sipedon. Copeia. https://doi.org/10.2307/1446345 (1990).

    Article 

    Google Scholar 

  • Haldar, C. & Pandey, R. Effect of pinealectomy on testicular cycle of Indian checkered water snake Natrix piscator. Gen. Comp. Endocrinol. 76, 214–222 (1989).

    CAS 
    PubMed 

    Google Scholar 

  • Joyner, P. H., Brown, J. D., Holladay, S. & Sleeman, J. M. Characterization of the bacterial microflora of the tympanic cavity of eastern box turtles with and without aural abscesses. J. Wildl. Dis. 42(4), 859–864 (2006).

    PubMed 

    Google Scholar 

  • Brown, G. P. & Shine, R. Why do most tropical animals reproduce seasonally? Testing hypotheses on an Australian snake. Ecology. 87(1), 133–143 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Bilbo, S. D., Dhabhar, F. S., Vishwanathan, K., Saul, A. & Nelson, R. J. Photoperiod affects the expression of sex and species differences in leucocyte number and leucocyte trafficking in congeneric hamsters. J. Psychoneuroendocrinol. 28, 1027–1043 (2003).

    CAS 

    Google Scholar 

  • Prendergast, B. J., Bilbo, S. D. & Nelson, R. J. Photoperiod controls the induction, retention, and retrieval of antigen-specific immunological memory. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, R54–R60 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Prendergast, B. J., Bilbo, S. D., Dhabhar, F. S. & Nelson, R. J. Effects of photoperiod history on immune responses to intermediate day lengths in Siberian hamsters (Phodopus sungorus). J. Neuroimmunol. 149, 31–39 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Prendergast, B. J., Edward, K. E. W., Yellon, S. M. & Nelson, R. J. Photorefractoriness of immune function in male Siberian hamsters (Phodopus sungorus). J. Neuroendocrinol. 14, 318–329 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Bhardwaj, A. K., Chandra, R. K., Pati, A. K. & Tripathi, M. K. Seasonal immune rhythm of leucocytes in the freshwater snakehead fish, Channa punctatus. J. Comp. Physiol. B. https://doi.org/10.1007/s00360-022-01460-7 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Cheng, A. C., Cheng, S. A., Chen, Y. Y. & Chen, J. C. Effects of temperature change on the innate cellular and humoral immune responses of orange-spotted grouper Epinephelus coioides and its susceptibility to Vibrio alginolyticus. Fish Shellfish Immunol. 26(5), 768–772 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Ndong, D., Chen, Y. Y., Lin, Y. H., Vaseeharan, B. & Chen, J. C. The immune response of tilapia Oreochromis mossambicus and its susceptibility to Streptococcus iniae under stress in low and high temperatures. Fish Shellfish Immunol. 22(6), 686–694 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Nikoskelainen, S., Bylund, G. & Lilius, E. M. Effect of environmental temperature on rainbow trout (Oncorhynchus mykiss) innate immunity. Dev. Comp. Immunol. 28(6), 581–592 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Scott, A. L., Rogers, W. A. & Klesius, P. H. Chemiluminescence by peripheral blood phagocytes from channel catfish: Function of opson in and temperature. Dev. Comp. Immunol. 9(2), 241–250 (1985).

    CAS 
    PubMed 

    Google Scholar 

  • Demas, G. E. & Nelson, R. J. Lack of immunological responsiveness to photoperiod in a tropical rodent, Peromyscus aztecushylocetes. J. Comp. Physiol. 173, 171–176 (2003).

    CAS 

    Google Scholar 

  • Gatien, M. L., Hotchkiss, A. K., Neigh, G. N., Dhabhar, F. S. & Nelson, R. J. Immune and stress responses in C57BL\6 and C3H\HeN mouse strains following photoperiod manipulation. J. Neuroendocrinol. Lett. 25(4), 267–272 (2004).

    Google Scholar 

  • Champney, T. H., Prado, J., Youngblood, T., Appel, K. & McMurray, D. N. Immune responsiveness of splenocytes after chronic daily melatonin administration in male syrian hamsters. Immunol. Lett. 58, 95–100 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • Turkowska, E., Rai, S., Majewski, P. M. & Skwarlo-Sonta, K. Diurnal and seasonal changes in IL-6 and IL-18 gene expression in blood leukocytes of male chickens with experimental peritonitis: The impact of lighting conditions and melatonin. J. Anim. Feed Sci. 22, 149–157 (2013).

    Google Scholar 

  • Chandra, R. K., Bhardwaj, A. K., Pati, A. K. & Tripathi, M. K. Seasonal Immune Rhythms of head kidney and spleen cells in the freshwater Teleost, Channa punctatus. Fish Shellfish Immunol. Rep. 5, 1–12 (2023).

    Google Scholar 

  • Lamkova, K., Simkova, A., Palikova, M., Jurajda, P. & Lojek, A. Seasonal changes in immunocompetence and parasitism in chub (Leuciscus cephalus), a freshwater cyprinid fish. Parasitol. Res. 101, 775–789 (2007).

    PubMed 

    Google Scholar 

  • Hanssen, S. A., Hasselquist, D., Folstad, I. & Erikstad, K. E. Cost of reproduction in a long-lived bird: Incubation effort reduces immune function and future reproduction. Proc. Biol. Sci. 272, 1039–1046 (2005).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Martin, L. B., Scheuerlein, A. & Wikelski, M. Immune activity elevates energy expenditure of house sparrows: A link between direct and indirect costs?. Proc. Biol. Sci. 270, 153–158 (2003).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Speakman, J. R. The physiological costs of reproduction in small mammals. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363, 375–398 (2008).

    PubMed 

    Google Scholar 

  • Weil, Z. M., Borniger, J. C., Cisse, Y. M., AbiSalloum, B. A. & Nelson, R. J. Neuroendocrine control of photoperiodic changes in immune function. Front. Neuroendocrinol. 37, 108–118 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Martin, L. B., Weil, Z. M. & Nelson, R. J. Seasonal changes in vertebrate immune activity: Mediation by physiological trade-offs. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363(1490), 321–339 (2008).

    PubMed 

    Google Scholar 

  • French, S. S., DeNardo, D. F., Moore, M. C., Associate Editor: Elizabeth Adkins‐Regan, & Editor: Monica A. Geber. Trade‐offs between the reproductive and immune systems: Facultative responses to resources or obligate responses to reproduction? Am. Nat. 170(1), 79–89. https://doi.org/10.1086/518569 (2007).

  • Gates, D. E., Valletta, J. J., Camille Bonneaud, C. & Recker, M. Quantitative host resistance drives the evolution of increased virulence in an emerging pathogen. J. Evol. Biol. 31, 1704–1714. https://doi.org/10.1111/jeb.13366 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Martinez, M. E. The calendar of epidemics: Seasonal cycles of infectious diseases. PLoS Pathol. 14(11), e1007327. https://doi.org/10.1371/journal.ppat.1007327 (2018).

    Article 
    CAS 

    Google Scholar 

  • Tosunoglu, M., Serbest, S., Parlak, S., Gokturk, S., Cetin, A., Arzu Uctepe, A., Yakin, Y. B. & Samsa, U. Some hematologic parameters of Elaphe Sauromates (Pallas, 1811). Herpetozoa. 23, 79–83 (2010).

  • Kumar, K., Bhattacharyya, S. & Sarfraz, A. Evaluation of two new fixatives for peripheral malaria smear. Int. J. Contemp. Med. Res. 5(1), 1–2 (2018).

    Google Scholar 

  • Arikan, H. & Cicek, K. Haematology of amphibians and reptiles: A review. North-West J. Z. 10(1), 190–209 (2014).

    Google Scholar 

  • Kularatne, S. A. M., Ranasinghe, J. G. S. & Rajapakse, P. V. J. Hematological and plasma biochemical parameters in a wild population of Naja naja (Linnaeus, 1758) in Sri Lanka. J. Venom. Anim. Toxins Incl. Trop. Dis. https://doi.org/10.1186/s40409-017-0098-7 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Soltanian, S. Effect of atrazine on immunocompetence of red-eared slider turtle (Trachemys scripta). J. Immunotoxicol. 13(6), 804–809 (2016).

    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 

  • Keller, J. M., McClellan-Green, P. D., Lee, A. M. & Arendt, M. D. Mitogen-induced lymphocyte proliferation in loggerhead sea turtles: Comparison of methods and effects of gender, plasma testosterone concentration, and body condition on immunity. Vet. Immunol. Immunopathol. 103, 269–281 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Khan, U. W. & Rai, U. Role of gonadotropin and Leydig cell-secreted factors in the control of testicular macrophage activities in the wall lizard Hemidactylus flaviviridis. Dev. Comp. Immunol. 32, 348–355 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Sakai, M., Kobayashi, M. & Kawauchi, H. In vitro activation of fish phagocytic cells by GH, prolactin and somatolactin. J. Endocrinol. 151(1), 113–118 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • Vera-Jimenez, N. I., Pietretti, D., Wiegertjes, G. F. & Nielsen, M. E. Comparative study of b-glucan induced respiratory burst measured by nitroblue tetrazolium assay and real-time luminol-enhanced chemiluminescence assay in common carp (Cyprinus carpio L.). Fish Shellfish Immunol. 34, 12161222 (2013).

    Google Scholar 

  • Berger, J. & Slapnickova, M. Circadian structure of rat neutrophil phagocytosis. Comp. Clin. Pathol. 12, 84–89 (2003).

    Google Scholar 

  • Mondal, S. & Rai, U. In vitro effect of temperature on phagocytic and cytotoxic activities of splenic phagocytes of the wall lizard, Hemidactylus flaviviridis. Comp. Biochem. Physiol. 129(a), 391–398 (2001).

    CAS 

    Google Scholar 

  • Ding, A. H., Nathan, C. F. & Stuehr, D. J. Release of reactive nitrogen intermediated and reactive oxygen intermediates from mouse peritoneal macrophages: Comparison of activating cytokines and evidence for independent production. J. Immunol. 141, 2407–2412 (1988).

    CAS 
    PubMed 

    Google Scholar 

  • Berridge, M. V., Herst, P. M. & Tan, A. S. Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction. Biotechnol. Annu. Rev. 11, 127–152 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Back To Top