close
close

Rethinking energy planning to mitigate the impacts of African hydropower

  • Kikstra, J. S., Mastrucci, A., Min, J., Riahi, K. & Rao, N. D. Decent living gaps and energy needs around the world. Environ. Res. Lett. 16, 095006 (2021).

    Google Scholar 

  • Akintande, O. J., Olubusoye, O. E., Adenikinju, A. F. & Olanrewaju, B. T. Modeling the determinants of renewable energy consumption: evidence from the five most populous nations in Africa. Energy 206, 117992 (2020).

    Google Scholar 

  • Africa Energy Outlook 2022: World Energy Outlook Special Report (IEA, 2022).

  • Renewable Power Generation Costs in 2022 (IRENA, 2023).

  • Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 77, 161–170 (2015).

    Google Scholar 

  • Gernaat, D. E., Bogaart, P. W., Vuuren, D. P. V., Biemans, H. & Niessink, R. High-resolution assessment of global technical and economic hydropower potential. Nat. Energy 2, 821–828 (2017).

    Google Scholar 

  • Sterl, S. et al. A spatiotemporal atlas of hydropower in Africa for energy modelling purposes. Open Res. Eur. 1, 29 (2022).

    Google Scholar 

  • Llamosas, C. & Sovacool, B. K. The future of hydropower? A systematic review of the drivers, benefits and governance dynamics of transboundary dams. Renew. Sustain. Energy Rev. 137, 110495 (2021).

    Google Scholar 

  • Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).

    CAS 

    Google Scholar 

  • Anderson, E. P. et al. Fragmentation of Andes-to-Amazon connectivity by hydropower dams. Sci. Adv. 4, eaao1642 (2018).

    Google Scholar 

  • Zarfl, C. et al. Future large hydropower dams impact global freshwater megafauna. Sci. Rep. 9, 18531 (2019).

    CAS 

    Google Scholar 

  • Barbarossa, V. et al. Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. Proc. Natl Acad. Sci. USA 117, 3648–3655 (2020).

    CAS 

    Google Scholar 

  • Dias, M. S. et al. Anthropogenic stressors and riverine fish extinctions. Ecol. Indic. 79, 37–46 (2017).

    Google Scholar 

  • Tickner, D. et al. Bending the curve of global freshwater biodiversity loss: an emergency recovery plan. BioScience 70, 330–342 (2020).

    Google Scholar 

  • Schmitt, R. J., Bizzi, S., Castelletti, A. & Kondolf, G. Improved trade-offs of hydropower and sand connectivity by strategic dam planning in the Mekong. Nat. Sustain. 1, 96–104 (2018).

    Google Scholar 

  • Schmitt, R. J. P., Bizzi, S., Castelletti, A., Opperman, J. & Kondolf, G. M. Planning dam portfolios for low sediment trapping shows limits for sustainable hydropower in the Mekong. Sci. Adv. 5 (2019).

  • Schmitt, R. J. et al. Strategic basin and delta planning increases the resilience of the Mekong Delta under future uncertainty. Proc. Natl Acad. Sci. USA 118, e2026127118 (2021).

    CAS 

    Google Scholar 

  • Kondolf, G. et al. Save the Mekong Delta from drowning. Science 376, 583–585 (2022).

    CAS 

    Google Scholar 

  • Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).

    CAS 

    Google Scholar 

  • Chowdhury, A. K. et al. Hydropower expansion in eco-sensitive river basins under global energy–economic change. Nat. Sustain. 7, 213–222 (2024).

    Google Scholar 

  • Hertwich, E. G. Addressing biogenic greenhouse gas emissions from hydropower in LCA. Environ. Sci. Technol. 47, 9604–9611 (2013).

    CAS 

    Google Scholar 

  • Deemer, B. R. et al. Greenhouse gas emissions from reservoir water surfaces: a new global synthesis. BioScience 66, 949–964 (2016).

    Google Scholar 

  • Prairie, Y. T. et al. Greenhouse gas emissions from freshwater reservoirs: what does the atmosphere see? Ecosystems 21, 1058–1071 (2018).

    CAS 

    Google Scholar 

  • Calamita, E. et al. Unaccounted CO2 leaks downstream of a large tropical hydroelectric reservoir. Proc. Natl Acad. Sci. USA 118, e2026004118 (2021).

    CAS 

    Google Scholar 

  • Harrison, J. A., Prairie, Y. T., Mercier-Blais, S. & Soued, C. Year-2020 global distribution and pathways of reservoir methane and carbon dioxide emissions according to the greenhouse gas from reservoirs (G-res) model. Glob. Biogeochem. Cycles 35, e2020GB006888 (2021).

    CAS 

    Google Scholar 

  • Soued, C., Harrison, J. A., Mercier-Blais, S. & Prairie, Y. T. Reservoir CO2 and CH4 emissions and their climate impact over the period 1900–2060. Nat. Geosci. 15, 700–705 (2022).

    CAS 

    Google Scholar 

  • Ou, Y. et al. Role of non-CO2 greenhouse gas emissions in limiting global warming. One Earth 5, 1312–1315 (2022).

    Google Scholar 

  • Haegel, N. M. et al. Terawatt-scale photovoltaics: transform global energy. Science 364, 836–838 (2019).

    CAS 

    Google Scholar 

  • Veers, P. et al. Grand challenges in the science of wind energy. Science 366, eaau2027 (2019).

    CAS 

    Google Scholar 

  • Meng, J., Way, R., Verdolini, E. & Diaz Anadon, L. Comparing expert elicitation and model-based probabilistic technology cost forecasts for the energy transition. Proc. Natl Acad. Sci. USA 118, e1917165118 (2021).

    CAS 

    Google Scholar 

  • Chowdhury, A. K. et al. Enabling a low-carbon electricity system for Southern Africa. Joule 6, 1826–1844 (2022).

    Google Scholar 

  • Carlino, A. et al. Declining cost of renewables and climate change curb the need for African hydropower expansion. Science 381, eadf5848 (2023).

    CAS 

    Google Scholar 

  • Almeida, R. M. et al. Strategic planning of hydropower development: balancing benefits and socioenvironmental costs. Curr. Opin. Environ. Sustain. 56, 101175 (2022).

    Google Scholar 

  • Almeida, R. M. et al. Reducing greenhouse gas emissions of Amazon hydropower with strategic dam planning. Nat. Commun. 10, 4281 (2019).

    Google Scholar 

  • Schmitt, R. J., Kittner, N., Kondolf, G. M. & Kammen, D. M. Joint strategic energy and river basin planning to reduce dam impacts on rivers in Myanmar. Environ. Res. Lett. 16, 054054 (2021).

    CAS 

    Google Scholar 

  • Flecker, A. S. et al. Reducing adverse impacts of Amazon hydropower expansion. Science 375, 753–760 (2022).

    CAS 

    Google Scholar 

  • Opperman, J. J. et al. Balancing renewable energy and river resources by moving from individual assessments of hydropower projects to energy system planning. Front. Environ. Sci. 10, 2410 (2023).

    Google Scholar 

  • Siala, K., Chowdhury, A. K., Dang, T. D. & Galelli, S. Solar energy and regional coordination as a feasible alternative to large hydropower in Southeast Asia. Nat. Commun. 12, 4159 (2021).

    CAS 

    Google Scholar 

  • Gonzalez, J. M. et al. Designing diversified renewable energy systems to balance multisector performance. Nat. Sustain. 6, 415–427 (2023).

    Google Scholar 

  • Neumann, F. & Brown, T. The near-optimal feasible space of a renewable power system model. Electr. Power Syst. Res. 190, 106690 (2021).

    Google Scholar 

  • Howells, M. et al. OSeMOSYS: the Open Source Energy Modeling System: an introduction to its ethos, structure and development. Energy Policy 39, 5850–5870 (2011).

    Google Scholar 

  • Taliotis, C. et al. An indicative analysis of investment opportunities in the African electricity supply sector—using TEMBA (The Electricity Model Base for Africa). Energy Sustain. Dev. 31, 50–66 (2016).

    Google Scholar 

  • Pappis, I. et al. Energy Projections for African Countries (JRC, 2019).

  • Pappis, I. et al. The effects of climate change mitigation strategies on the energy system of Africa and its associated water footprint. Environ. Res. Lett. 17, 044048 (2022).

    Google Scholar 

  • Chawanda, C. J., Nkwasa, A., Thiery, W. & van Griensven, A. Combined impacts of climate and land-use change on future water resources in Africa. Hydrol. Earth Syst. Sci. 28, 117–138 (2024).

    Google Scholar 

  • Frieler, K. et al. Assessing the impacts of 1.5 C global warming—simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geosci. Model Dev. 10, 4321–4345 (2017).

    Google Scholar 

  • Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Google Scholar 

  • Grill, G., Dallaire, C. O., Chouinard, E. F., Sindorf, N. & Lehner, B. Development of new indicators to evaluate river fragmentation and flow regulation at large scales: a case study for the Mekong River Basin. Ecol. Indic. 45, 148–159 (2014).

    Google Scholar 

  • Grill, G. et al. An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales. Environ. Res. Lett. 10, 015001 (2015).

    Google Scholar 

  • Jager, H. I. et al. Getting lost tracking the carbon footprint of hydropower. Renew. Sustain. Energy Rev. 162, 112408 (2022).

    CAS 

    Google Scholar 

  • Grochowicz, A., van Greevenbroek, K., Benth, F. E. & Zeyringer, M. Intersecting near-optimal spaces: European power systems with more resilience to weather variability. Energy Econ. 106496, 106496 (2023).

    Google Scholar 

  • Rheinheimer, D. E., Tarroja, B., Rallings, A. M., Willis, A. D. & Viers, J. H. Hydropower representation in water and energy system models: a review of divergences and call for reconciliation. Environ. Res. Infrastruct. Sustain. 3, 012001 (2023).

    Google Scholar 

  • Schmitt, R. J., Kittner, N., Kondolf, G. M. & Kammen, D. M. Deploy diverse renewables to save tropical rivers. Nature 569, 330–332 (2019).

    CAS 

    Google Scholar 

  • Hatchard, S., Schmitt, R. J., Pianosi, F., Savage, J. & Bates, P. Strategic siting and design of dams minimizes impacts on seasonal floodplain inundation. Environ. Res. Lett. 18, 084011 (2023).

    Google Scholar 

  • Allen, G. H. & Pavelsky, T. M. Global extent of rivers and streams. Science 361, 585–588 (2018).

    CAS 

    Google Scholar 

  • Mayer, A., Castro-Diaz, L., Lopez, M. C., Leturcq, G. & Moran, E. F. Is hydropower worth it? Exploring Amazonian resettlement, human development and environmental costs with the Belo Monte project in Brazil. Energy Res. Soc. Sci. 78, 102129 (2021).

    Google Scholar 

  • Trotter, P. A., Maconachie, R. & McManus, M. C. Solar energy’s potential to mitigate political risks: the case of an optimised Africa-wide network. Energy Policy 117, 108–126 (2018).

    Google Scholar 

  • Sterl, S. et al. Smart renewable electricity portfolios in West Africa. Nat. Sustain. 3, 710–719 (2020).

    Google Scholar 

  • Basheer, M. et al. Cooperative adaptive management of the Nile River with climate and socio-economic uncertainties. Nat. Clim. Change 13, 48–57 (2023).

    Google Scholar 

  • Arnold, W., Salazar, J. Z., Carlino, A., Giuliani, M. & Castelletti, A. Operations eclipse sequencing in multipurpose dam planning. Earth’s Future 11, e2022EF003186 (2023).

    Google Scholar 

  • Liu, Z. & He, X. Balancing-oriented hydropower operation makes the clean energy transition more affordable and simultaneously boosts water security. Nat. Water 1, 778–789 (2023).

    Google Scholar 

  • Brown, C., Ghile, Y., Laverty, M. & Li, K. Decision scaling: linking bottom-up vulnerability analysis with climate projections in the water sector. Water Resour. Res. 48 (2012).

  • Schmitt, R. J., Rosa, L. & Daily, G. C. Global expansion of sustainable irrigation limited by water storage. Proc. Natl Acad. Sci. USA 119, e2214291119 (2022).

    CAS 

    Google Scholar 

  • Conway, D., Dalin, C., Landman, W. A. & Osborn, T. J. Hydropower plans in Eastern and Southern Africa increase risk of concurrent climate-related electricity supply disruption. Nat. Energy 2, 946–953 (2017).

    Google Scholar 

  • Wu, G. C. et al. Strategic siting and regional grid interconnections key to low-carbon futures in African countries. Proc. Natl Acad. Sci. USA 114, E3004–E3012 (2017).

    CAS 

    Google Scholar 

  • Wu, G. C. et al. Avoiding ecosystem and social impacts of hydropower, wind, and solar in Southern Africa’s low-carbon electricity system. Nat. Commun. 15, 1083 (2024).

    CAS 

    Google Scholar 

  • Sovacool, B. K., Gilbert, A. & Nugent, D. An international comparative assessment of construction cost overruns for electricity infrastructure. Energy Res. Soc. Sci. 3, 152–160 (2014).

    Google Scholar 

  • Deshmukh, R., Mileva, A. & Wu, G. Renewable energy alternatives to mega hydropower: a case study of Inga 3 for Southern Africa. Environ. Res. Lett. 13, 064020 (2018).

    Google Scholar 

  • Barnes, T., Shivakumar, A., Brinkerink, M. & Niet, T. OSeMOSYS Global, an open-source, open data global electricity system model generator. Sci. Data 9, 623 (2022).

    Google Scholar 

  • Lehner, B. & Grill, G. Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrol. Process. 27, 2171–2186 (2013).

    Google Scholar 

  • Allen, P. M., Arnold, J. C. & Byars, B. W. Downstream channel geometry for use in planning-level models 1. J. Am. Water Resour. Assoc. 30, 663–671 (1994).

    Google Scholar 

  • QGIS Geographic Information System (QGIS Association, 2024).

  • Hagberg, A., Swart, P. & Schult, D. Exploring Network Structure, Dynamics, and Function Using NetworkX (OSTI, 2008).

  • Life Cycle Assessment Harmonization (NREL, 2021); https://www.nrel.gov/analysis/life-cycle-assessment.html

  • O’Connor, P. et al. Hydropower Vision: A New Chapter for America’s 1st Renewable Electricity Source (US Department of Energy, 2016).

  • Pehl, M. et al. Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling. Nat. Energy 2, 939–945 (2017).

    CAS 

    Google Scholar 

  • Lehner, B. et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 9, 494–502 (2011).

    Google Scholar 

  • Bartos, M. pysheds: simple and fast watershed delineation in Python. GitHub https://github.com/mdbartos/pysheds (2020).

  • Prairie, Y. T. et al. A new modelling framework to assess biogenic GHG emissions from reservoirs: the G-res tool. Environ. Model. Softw. 143, 105117 (2021).

    Google Scholar 

  • Hadka, D. & Reed, P. Borg: an auto-adaptive many-objective evolutionary computing framework. Evol. Comput. 21, 231–259 (2013).

    Google Scholar 

  • Pappis, I., Sridharan, V., Usher, W. & Howells, M. JRC-TEMBA—African decarbonisation pathways. Zenodo https://doi.org/10.5281/zenodo.3521841 (2019).

  • Carlino, A. Data in support of ‘Declining cost of renewables and climate change curb the need for African hydropower expansion’. Zenodo https://doi.org/10.5281/zenodo.7931050 (2022).

  • Carlino, A., Schmitt, R., Clark, A. & Castelletti, A. Data and code in support of ‘Rethinking energy planning to mitigate environmental and climatic impacts of future African hydropower’. Zenodo https://doi.org/10.5281/zenodo.8360437 (2023).

  • Back To Top